(1). 项目结构如下
sharding-jdbc-demo
├── pom.xml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── help
│ │ │ └── lixin
│ │ │ └── shardingjdbc
│ │ │ ├── App.java
│ │ │ └── mapper
│ │ │ └── OrderMapper.java
│ │ └── resources
│ │ └── application.properties
│ └── test
│ └── java
│ └── help
│ └── lixin
│ └── shardingjdbc
│ └── OrderTest.java
└── target
(2). 表结构如下
CREATE DATABASE `order_db` CHARACTER SET 'utf8' COLLATE 'utf8_general_ci';
USE `order_db`;
DROP TABLE IF EXISTS `t_order_1`;
CREATE TABLE `t_order_1` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`price` decimal(10, 2) NOT NULL COMMENT '订单价格',
`user_id` bigint(20) NOT NULL COMMENT '下单用户id',
`status` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
DROP TABLE IF EXISTS `t_order_2`;
CREATE TABLE `t_order_2` (
`order_id` bigint(20) NOT NULL COMMENT '订单id',
`price` decimal(10, 2) NOT NULL COMMENT '订单价格',
`user_id` bigint(20) NOT NULL COMMENT '下单用户id',
`status` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
PRIMARY KEY (`order_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
(3). pom.xml配置
注意:不要引入druid-spring-boot-starter,因为它在启动时,会检查(spring.datasource.xxx)配置,如果不存在,就会抛出异常.
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>help.lixin.shardingjdbc</groupId>
<artifactId>sharding-jdbc-demo</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>sharding-jdbc-demo</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<java.version>1.8</java.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.1.0.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-generator</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.mybatis</groupId>
<artifactId>mybatis-typehandlers-jsr310</artifactId>
<version>1.0.2</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.22</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>4.1.1</version>
</dependency>
</dependencies>
<build>
<finalName>${project.name}</finalName>
<resources>
<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>
<includes>
<include>**/*</include>
</includes>
</resource>
<resource>
<directory>src/main/java</directory>
<includes>
<include>**/*.xml</include>
</includes>
</resource>
</resources>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-resources-plugin</artifactId>
<configuration>
<encoding>utf-8</encoding>
<useDefaultDelimiters>true</useDefaultDelimiters>
</configuration>
</plugin>
</plugins>
</build>
</project>
(4). OrderMapper
package help.lixin.shardingjdbc.mapper;
import java.math.BigDecimal;
import java.util.List;
import java.util.Map;
import org.apache.ibatis.annotations.Insert;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;
@Mapper
public interface OrderMapper {
/**
* 插入订单
* @param price
* @param userId
* @param status
* @return
*/
@Insert("insert into t_order(user_id,price,status)values(#{userId},#{price},#{status})")
int insertOrder(@Param("userId") Long userId, @Param("price") BigDecimal price, @Param("status") String status);
/**
* 根据id列表查询订单
* @param orderIds
* @return
*/
@Select("<script>" +
"select" +
" * " +
" from t_order t " +
" where t.order_id in " +
" <foreach collection='orderIds' open='(' separator=',' close=')' item='id'>" +
" #{id} " +
" </foreach>" +
"</script>")
List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds);
}
(5). application.properties
server.port=8080
spring.application.name=sharding-jdbc-demo
spring.http.encoding.enabled=true
spring.http.encoding.charset=UTF-8
spring.http.encoding.force=true
spring.main.allow-bean-definition-overriding=true
# mybatis配置
mybatis.configuration.map-underscore-to-camel-case=true
# 日志配置信息
logging.level.root=info
logging.level.org.springframework.web=info
logging.level.com.itheima.dbsharding =debug
logging.level.druid.sql=debug
#配置数据源的名称(多个之间用逗号分隔).
spring.shardingsphere.datasource.names=d1
# 数据源名称:d1对应的详细信息
spring.shardingsphere.datasource.d1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.d1.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.d1.url=jdbc:mysql://localhost:3306/order_db?useUnicode=true
spring.shardingsphere.datasource.d1.username=root
spring.shardingsphere.datasource.d1.password=123456
############################################逻辑表配置项开始####################################################
# org.apache.shardingsphere.shardingjdbc.spring.boot.sharding.SpringBootShardingRuleConfigurationProperties
# org.apache.shardingsphere.core.yaml.config.sharding.YamlShardingRuleConfiguration
# 指定逻辑表:t_order的数据节点:d1.t_order_1,d1.t_order_2
# org.apache.shardingsphere.core.yaml.config.sharding.YamlTableRuleConfiguration
# 执行原理:
# 1. sharding-jdbc会根据逻辑表名称(t_order),找到配置对应的值(d1.t_order_$->{1..2}).
# 2. 这样,就能找到d1数据源.
# 3. 根据d1数据源,可以找到真实的表名(t_order_1/t_order_2).
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes=d1.t_order_$->{1..2}
# 指定逻辑表t_order表的主键(order_id)生成策略为:雪花算法.
# org.apache.shardingsphere.core.yaml.config.sharding.YamlKeyGeneratorConfiguration
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE
# 指定t_order表的分片策略,分片策略包括分片键和分片算法
# org.apache.shardingsphere.core.yaml.config.sharding.YamlShardingStrategyConfiguration
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column=order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression=t_order_$->{order_id % 2 + 1}
############################################逻辑表配置项结束####################################################
# 打开sharding-jdbc的日志.
spring.shardingsphere.props.sql.show=true
(6). App
package help.lixin.shardingjdbc;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class App {
public static void main(String[] args) {
SpringApplication.run(App.class, args);
}
}
(7). OrderTest
package help.lixin.shardingjdbc;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import help.lixin.shardingjdbc.mapper.OrderMapper;
import junit.framework.Assert;
@RunWith(SpringRunner.class)
@SpringBootTest(classes = App.class)
public class OrderTest {
@Autowired
private OrderMapper orderMapper;
@Test
public void batchSave() {
for (long i = 1; i < 11; i++) {
orderMapper.insertOrder(i, new BigDecimal(20.5 + i), "SUCCESS");
}
}
@SuppressWarnings({ "deprecation", "rawtypes" })
@Test
public void query() {
// 尝试跨多个表的查询
List<Long> ids = new ArrayList<Long>();
ids.add(565225137922637824L);
ids.add(565225139432587265L);
ids.add(565225139524861952L);
ids.add(565225139612942337L);
// select * from t_order t where t.order_id in ( ? , ? , ? , ? )
// select * from t_order_1 t where t.order_id in ( ? , ? , ? , ? ) ::: [565225137922637824, 565225139432587265, 565225139524861952, 565225139612942337]
// select * from t_order_2 t where t.order_id in ( ? , ? , ? , ? ) ::: [565225137922637824, 565225139432587265, 565225139524861952, 565225139612942337]
List<Map> results = orderMapper.selectOrderbyIds(ids);
Assert.assertNotNull(results);
}
}
(8). 查看表信息
mysql> SELECT * FROM t_order_1;
+--------------------+-------+---------+---------+
| order_id | price | user_id | status |
+--------------------+-------+---------+---------+
| 565225137922637824 | 21.50 | 1 | SUCCESS |
| 565225139524861952 | 23.50 | 3 | SUCCESS |
| 565225139701022720 | 25.50 | 5 | SUCCESS |
| 565225139881377792 | 27.50 | 7 | SUCCESS |
| 565225140095287296 | 29.50 | 9 | SUCCESS |
+--------------------+-------+---------+---------+
5 rows in set (0.00 sec)
mysql> SELECT * FROM t_order_2;
+--------------------+-------+---------+---------+
| order_id | price | user_id | status |
+--------------------+-------+---------+---------+
| 565225139432587265 | 22.50 | 2 | SUCCESS |
| 565225139612942337 | 24.50 | 4 | SUCCESS |
| 565225139801686017 | 26.50 | 6 | SUCCESS |
| 565225139982041089 | 28.50 | 8 | SUCCESS |
| 565225140191756289 | 30.50 | 10 | SUCCESS |
+--------------------+-------+---------+---------+
5 rows in set (0.00 sec)
(9). 总结
Sharding-JDBC会对逻辑表进行解析,然后,把SQL语句转换成真实表的SQL语句,并进行:并行查询与合并,然后,返回结果集.